A Genetic Basis for a Postmeiotic X Versus Y Chromosome Intragenomic Conflict in the Mouse
نویسندگان
چکیده
Intragenomic conflicts arise when a genetic element favours its own transmission to the detriment of others. Conflicts over sex chromosome transmission are expected to have influenced genome structure, gene regulation, and speciation. In the mouse, the existence of an intragenomic conflict between X- and Y-linked multicopy genes has long been suggested but never demonstrated. The Y-encoded multicopy gene Sly has been shown to have a predominant role in the epigenetic repression of post meiotic sex chromatin (PMSC) and, as such, represses X and Y genes, among which are its X-linked homologs Slx and Slxl1. Here, we produced mice that are deficient for both Sly and Slx/Slxl1 and observed that Slx/Slxl1 has an opposite role to that of Sly, in that it stimulates XY gene expression in spermatids. Slx/Slxl1 deficiency rescues the sperm differentiation defects and near sterility caused by Sly deficiency and vice versa. Slx/Slxl1 deficiency also causes a sex ratio distortion towards the production of male offspring that is corrected by Sly deficiency. All in all, our data show that Slx/Slxl1 and Sly have antagonistic effects during sperm differentiation and are involved in a postmeiotic intragenomic conflict that causes segregation distortion and male sterility. This is undoubtedly what drove the massive gene amplification on the mouse X and Y chromosomes. It may also be at the basis of cases of F1 male hybrid sterility where the balance between Slx/Slxl1 and Sly copy number, and therefore expression, is disrupted. To the best of our knowledge, our work is the first demonstration of a competition occurring between X and Y related genes in mammals. It also provides a biological basis for the concept that intragenomic conflict is an important evolutionary force which impacts on gene expression, genome structure, and speciation.
منابع مشابه
The Conflict within and the Escalating War between the Sex Chromosomes
Selfish genetic elements that distort Mendelian segregation to favor their own transmission are common in eukaryotic genomes [1,2]. Segregation distortion can reduce whole organism fitness, resulting in strong counter selection for genes that suppress distorters. Such intragenomic conflicts have the potential to drive recurrent bouts of antagonistic co-evolution [3]. Theory predicts that geneti...
متن کاملI-34: NRY Haplotype Analysis: towards A Better Understanding of The Genetic Basis of Spermatogenic Failure
It has been established that the Y chromosome carries genes required for spermatogenesis and male fertility. For many decades worldwide screening for gene identification has been conducted in research laboratories. However, it has been a difficult process in identifying such genes (i.e. causative mutations) which could explain the phenotypic variation and could be potentially used as markers fo...
متن کاملInm-6: Molecular Genetic Basis of Infertility
Background: Sexual reproduction affords the stands for conserving genetic characteristics and sequentially, genetic inconsistency may influence the capability to imitate. Materials and Methods: Research was conducted by subject in PubMed and other databases. Results: A significant number of genotypes have been related with infertility phenotypes and evaluation of precise genes in humans and mod...
متن کاملDeletions on mouse Yq lead to upregulation of multiple X- and Y-linked transcripts in spermatids.
Deletions on the mouse Y-chromosome long arm (MSYq) lead to teratozoospermia and in severe cases to infertility. We find that the downstream transcriptional changes in the testis resulting from the loss of MSYq-encoded transcripts involve upregulation of multiple X- and Y-linked spermatid-expressed genes, but not related autosomal genes. Therefore, this indicates that in normal males, there is ...
متن کاملGenomic conflict drives patterns of X-linked population structure in Drosophila neotestacea.
Intragenomic conflict has the potential to cause widespread changes in patterns of genetic diversity and genome evolution. In this study, we investigate the consequences of sex-ratio (SR) drive on the population genetic patterns of the X-chromosome in Drosophila neotestacea. An SR X-chromosome prevents the maturation of Y-bearing sperm during male spermatogenesis and thus is transmitted to ~100...
متن کامل